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SUMMARY

The concept of a locking material and the potential effectiveness of the locking

material for possible use as a countermeasure to specified mine blasts have been

investigated in this report. The effectiveness of the countermeasure has been

demonstrated by the use of analytical methods and second order accurate computer

codes. Computer codes have been developed to investigate and evaluate such a design

that uses the countermeasures. These computer codes include programs in one space

dimension, and axisymmetric coordinates.

As a result of the investigation, specific design parameters, candidate materials

and fields for further study have been identified.
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1. INTRODUCTION

This report presents the results, to date, of investigations concerning the

development of a countermeasure to mine blasts. In particular, the investigations have

been conducted to develop computer simulation techniques that are capable of simulating

the transient dynamic response of Locking materials 12or locking material-structure

combinations. These deveoloped techniques have been used to

(a) examine if a locking material shield has the potential of protecting a given
structure from dynamic loads that have a time history similar to that of mine
blasts, and

(b) provide a tool for designing the locking material shield-structure
combination.

Terms such as foams, distended materials 3 or nonreactive porous solids4,1 have been

used to describe the locking materials. Typically, a locking material is characterized by
a hydrostatic pressure-density curve similar to that shown in Figure 1.1. The model

described in Figure 1.1 is an idealized behavior. In practice, a more realistic model may

be necessary. A material, which follows the model shown in Figure 1.2 behaves like an

elastic solid below a pressure PE' For pressure P> PEI the pore spaces collapse and the

material locks at a density p, . The subsequent behavior of the material is that of an

incompressible material. In practical shock interaction and attenuation calculations by

numerical techniques, the model shown in Figure 1.1 is very often replaced by a pressure
density relationship similar to those shown in Figures 1.2 or 1.3. In Figure 1.3, after

reaching the locking density, the material is assumed to follow a pressure-density

behavior of the corresponding solid. Furthermore, unloading will follow different paths
as shown in the Figures 1.2 and 1.3. Such unloading paths are necessary to reflect the

fact that a collapsed porous space can not be recovered. An exception to this rule is the
3

behavior of graphite foam
The theoretical foundation for expecting a locking material to be an effective peak

stress attenuator or a countermeasure to mine blasts can be summarized as follows.

Materials, that approximate a pressure-density behavior of Figures 1.1, 1.2 or 1.3, imply
a large ratio of unloading or rarefaction wave velocity to the loading or shock velocity.
The large ratio is the result of the fact that the velocity of the loading shockwave Is
related to the slope of a straight line connecting the initial and final states In the
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pressure density diagram. The velocity of the unloading wave or rarefaction wave is
related to the slope of the pressure-density curve for the solid at the locked state. The
attenuation is caused by the unloading or rarefaction wave overtaking the loading shock

wave because of the relatively higher velocity of the unloading waves. In practical
situations, the effects of shear stresses and yielding need to be considered.

1.1 Candidate Materials

In principle, locking material can be produced from any parent solid material. The
needed process of production requires the formation of a nonreactive porous solid of a

density lower than that of the parent material. A commerical aluminum locking material

MO-AL (Emerson and Cummings) has been available in the past. This is usually
inhomogeneous. Homogeneous aluminum locking material can be produced by

techniques 3 such as hot pressing of aluminum powders, cold pressing of aluminum
powders followed by sintering or a repeated sequence of hot pressing that is followed by

sintering of aluminum powders and the use of silica microballons. Commerically,
graphite locking materials are available from companies such as National Carbon

Company. Of course, a very common locking material of comparatively low threshold
pressure capability that is easily available is the styro-foam. Depending on the
environment and the peak stresses that need to be attenuated, different types of locking
materials can be chosen or designed for a particular application. For example, in the
case of a tank that is subjected to mine blasts, a locking material made of steel may be
an interesting possibility. In some cases, a combination of different locking materials or
a sandwich construction may be more practical.

1.2 Theoretical Foundation

First, a locking material in a state of one dimensional strain along x-axis is

considered.* A pressure-density relationship as shown in Figure 1.4 has been assumed.
Initially, stresses and velocities in the region x>O, have been assumed to be equal to zero.

At time t = 0, it is assumed that a stress -Ox = Go is applied at the left boundary. The
left boundary is initially at x = x0 (t = 0) = 0 (figure 1.5). In addition to the pressure

density behavior, the behavior in shear is assumed to be elastic-plastic with the following

yield condition.
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(o' I " C"2 )2 + (a2 - a 3) 2 + (a3 "1 ) 2  2Y 2  (1.1)

In this equation, a 1' a 2, 03 are the principal stresses and Y is the yield stress in

simple tension. For the assumed one-dimensional strain conditions, a o x -p relationship

can be derived from the pressure-density relationship and the assumed yield condition.

The resulting a x - p relationship is illustrated in Figure 1.6. The slope of the r x -p curve

for p > p Lis derived from the mechanical behavior of the solid that constitutes the parent

material for the given locking material of initial density po. For example, p o for an

aluminum locking material can be in the range of 1.1 gms/c.c. to 2.3 gms/c.c. The value

of p is approximately equal to 2.7 gms/c.c. In practice, p., is usually slightly below the

value of the solid density of the parent material.

For t>O, the applied stress at the left boundary results in two stress waves

propagating in the positive x-direction. The first wave is an elastic forerunner that

carries the stress discontinuity that corresponds to Y*. The second wave is a shock wave

that carries the stress discontinuity that corresponds to the difference between a and
0

Y*. The shockwave velocity is denoted by k. The following jump conditions are valid

across the elastic forerunner and the shock wave.

Pe(ke v) Pe(kj- v e) (1.2)

Y Pe(ke -ve)ve + P (k -v )v 0  (1.3)

Pt kL- vL = ekv) . e<,-e)v (1.4)
a7 - i 0e(k V )v (1.5)

In these equations v* and v are the particle velocities ahead of the elastic

forerunner wave and behind the forerunner wave respectively. The velocity of elastic

forerunner wave itself is equal to and vL is the particle velocity behind the shock

wave. From initial conditions, vo = 0. From equations (1.4) and (1.5) the shock wave

velocity ktis given by the following equation.

KC 2

Y jK ) Y
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Usually, v e is very small and

Pe p0

Then

t P

This is the velocity of the loading shock wave in the locking material. For

example, for aluminum locking material of initial density P0  1.5 gms/c.c.,

Pz= 2.7 gms/c.c., Y = 37,500 psi (258.6 mpa) and a0 = 125,000 psi (862 mpa) the velocity

of the loading shock wave is 3354 feet per second (1022 m/sec) which is approximately

20% of the longitudinal elastic wave velocity of the solid aluminium. These examples

qualitatively illustrate the slow loading velocities in a locking material of low initial

density. However, it is to be noted that the shock wave velocity in a solid is slower than

the correspondifig longitudinal elastic wave velocity. Even then, the shock wave velocity

can be shown to be slower in locking materials than in the corresponding solid.

1.3 Experimental Background

In the past, experimental investigations have been conducted 3 on several locking

materials. In these investigations, metals, plastics, graphite and ceramics have been

used as parent materials to produce locking materials. Experiments have been conducted

.4 by using light gas guns and flyer plates. In these experiments, attempts have been made

to simulate conditions of one dimensional strain. From the paint of view of the present

study, a significant result from these studies concerns a comparison of the shock wave

velocities in locking materials with the corresponding wave velocities in solid materials.

In most of these studies, a two wave pattern has been observed in locking materials

and solids. In locking materials, a forerunner wave carries stresses in the material

before the phase transition from the initial density p 0 to the locked density p.,. The

second slow wave corresponds to the shock wave that was discussed in the previous

section. This shock wave carries stresses that exceed the stresses necessary for phase

transition. Solid materials also exhibit a two wave pattern. In this case, the stresses

carried by the forerunner wave correspond to the yield limit and the elastic behavior of
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the solid before yield. This forerunner wave travels at a velocity corresponding to the

longitudinal elastic wave velocity in the isotropic solid. The second wave carries stresses

that exceed the elastic limit. The experiments confirm the fact that this second wave in

the solid is much faster than the second shock wave in the locking material. For

example, in aluminum locking materials of initial density p0 = 2.1 gms/c.c., the second

shock wave velocity varied from 0.7 to 1.29 mm/psec. The second wave velocity, in the

corresponding solid was in the range of 4.62 mm/Usec. Similarly, the first wave

velocities in the locking materials were smaller than the first wave velocities in the

corresponding solid. The first wave velocities, in aluminum locking materials of initial

density p0o = 2.1 gms/c.c., varied in the range 1.6 mm/Isec to 2.0 mm/ 1isec. The

corresponding first wave in the solid travelled with a velocity of 6.11 mm/1i sec.

The theoretical foundation and the results of the experimental studies confirm the

potential benefits that can be derived from locking materials when they are used as

protective structures.

2. RESEARCH PLAN

2.1 Problems Associated With Engineerin! Design

In the point of view of engineering designs, the results of this project should

provide tools to design a countermeasure or a protective structure for the mine blasts

that will be specified. In this report, however, the protective structure for mine blasts is

assumed to be made of a locking material. Specifically, such a design involves the

selection of a parent material from which the locking material is produced, the thickness

of the protective structure, other geometrical parameters and methods of joining the

countermeasure to the structure. In addition, the selection of an initial density for the

locking material and the specification of the desired microstructure constitute important

aspects of the design. The selected Initial density, the specified production technique

and the resulting microstructure, usually determine the range of pressures at which the

phase transition takes place from the initial density to the locked density. The

microstructure is also responsible tor the elastic-plastic stresb-strain behavior and the

associated yield conditions.

An essen al design tool for the selection of the various design parameters, is a

compe er sims .tion that is capable of providing the transient dynamic response of the

..I. _ _ _ - .. ,* - . .
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locking material or the locking material and structure combinations. The specified mine

blasts and the various design parameters can be supplied as an input to the resulting

computer program. The output can be obtained as deformations and stresses at various

locations as a function of time. The output data can then be used

(a) to check if the selected design parameters provide the desired margin of
safety for various failure modes,

(b) to iterate or to modify the design parameters and

(c) to establish the damage tolerance and reliability of the design.

The primary objective of the reported investigations is to develop such computer

simulations and the resulting computer programs. To date, most of the reported

investigations have been restricted to one space dimension and time. The results have

been mainly used to simulate the experimental results. The programs have not been used

to study the effectiveness of the locking material as a countermeasure to resist mine

blasts. A study of the transient dynamic response of a locking material that involved two

space dimensions and time has been reported by the author4 . This study described the

impact of compactible plates under axisymmetric conditions. The constitutive

relationship that was used for the compactible plate is very specialized and cannot be

easily generalized for the locking materials of concern here. The one dimensional

analysis and the compactible plate analysis have used the finite difference technique

developed by Von Neuman, 2 '3 and Wilkins3 . Certain difficulties were encountered in

the application of the Von Neuman's approach to locking materials.

(1) Very small time steps were needed to account for the phase transition from
the initial density to the locked density.

(2) An accurate computer simulation of the precursor wave was very difficult.

(3) Computational efficiency and the level of accuracy decreased when two or
more space dimensions were considered. Similar problems were encountered
in considering multiple reflections.

Other investigators 3'4 also experienced similar difficulties in applying the Von

Neumann's technique to the study of the dynamic response of locking materials and phase
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transition. In order to reduce these difficulties and to develop the needed computer

simulation techniques for transient dynamic response of locking materials, the following

research plan was adapted.

(I) The first step was to prepare a state-of-the-art review of finite difference
methods for the numerical solution of hyperbolic differential equations.

(2) The second step was to select a computationally efficient and accurate finite
difference method.

(3) The selected second order accurate method was then applied to study the
transient response of locking material structures under the conditions of one
dimensional strain. The purpose of the analysis was to demonstrate the
capabiltiy of locking material as a countermeasure to mine blasts.

(4) Then, a computer simulation of locking material was developed under
conditions of axisymmetry and finite deformations.

3. STATE-OF-THE-ART

The field of the analysis of the transient dynamic response of elastic-plastic-

locking materials is in the general field that is concerned with seeking solutions to

nonlinear hyperbolic differential equations. For both linear and nonlinear differential

equations, that are encountered in the field of solid mechanics, very few analytical

solutions have been obtained. As a consequence, alternative methods of solutions have

been sought for many practical problems of solid mechanics. Integral tranform
5-7

techniques have been very effective tools in solving linear elastodynamic problems

Primarily, integral transforms, such as Laplace tranforms, have been used to remove

time as an independent variable. This effectively reduces the equation to an elliptic

type. After the solutions have been obtained to the reduced equation, in tranformed

variables, the next operation is to obtain the inverse tranform to return the solution to

the time domain. One of the particularly successful techniques of obtaining the inverse
8transforms for elastodynamic problems, is the Cagniard-deHoop technique . Basically,

this method involves the modification of the contour of integrations that are encountered

in the process of obtaining inverse transforms, in such a way that the integrals are

rendered to a form with known solutions. This technique has been successfully applied to

many solid mechanics problems 9 -2 2 .

These tranform techniques have limitations when applied to nonlinear problems and

k -
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structures with finite boundaries. For this class of problems, other numerical methods

are necessary. Numerical methods that use the method of characteristics, have been

primarily restricted to the class of one space dimensional problems. Butler 23 and

Clifton 2 4 have reported the applications to two space dimensional problems. Most of the

developments in the last two decades have used finite difference and finite element

methods to solve the transient dynamic response problems in solids.

3.1 Finite Difference Methods

The research activity of the sixties and seventies has proved that the finite

element methods are superior to other numerical methods in solving elastostatic

problems. However, the same superiority does not apply to linear or nonlinear transient

dynamic response problems in solids. In fact, the finite difference methods offer a viable

choice to the solution of transient dynamic response problems. It has been son5that,

for selected problems, finite difference methods provide better accuracy and computa-
tional efficiency when compared with the solutions obtained by using finite element

methods. The rest of this review of the state-of-the-art is restricted to finite difference

methods and their application to the study of the linear and nonlinear transient dynamic

response problems in solids.

Early work in the field of the application of the finite difference methods to
transient dynamic response of solids, consisted of the application of a finite difference

scheme developed by Von Neumann2 for use in hydrodynamics. The Von Neumann's

scheme is an explicit finite difference approximation of the time derivatives and is often
27 28classified as "Leap Frog" scheme2 7 . A classic paper in this field is by Wilkins to solve

two and three-dimensional transient2  elastodynamic problems. Wilkins has also

considered ideal plasticity and large deformation effects in his studies.

In Wilkin-s approach, as is done in all leap frog schemes, the dependent variables
are staggered in space and time to satisfy the stability requirements and maintain second

order of accuracy. This results in the calculation of only one set of field variables at any

particular mesh point. This means that only stresses or velocities are computed at a

selected mesh point. Furthermore, such a staggered scheme sometimes results in

computationally induced oscillations3 0 . These cornputatio. .ally induced oscillations can
26be minimized by using an artificial viscosity . However, the use of the artificial

viscosity results in a finite difference scheme that is not optimally stable30 The time

steps are often reduced by a factor of three in two-dimensional problems 2 2 9
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Variations of Wilkins! approach3 1 -36 appear throughout the literature in the field of

the study of transient elastodynamic problems. Clifton2 4 has proposed a different

approach to the problem. He has extended the difference scheme developed by Butler 2 3 ,

for hydrodynamics, to study two-dimensional elastodynamic problems. This finite

difference scheme has been developed by formulating integration procedures along

bicharacteristics. The resulting procedure is an explicit finite difference scheme.

Unlike the leap frog scheme, all the variables are calculated at all mesh points.

Lax and Wendroff3 7 have developed a second order accurate scheme for

hydrodynamic problems. In this scheme, all the dependent variables are calculated at all

mesh points. At interior points Clifton's scheme and Lax-Wendroff's scheme are

identical. Both these schemes, however, are not optimally stable, in the sense of
38Courant, Friedrich and Levy, for more than one space dimension . This leads to

computational procedures that are less than optimally efficient. Also the Lax-Wendroff

schemes involve computation of squares of certain matrices and result in a complicated

algorithm. Smith 3 9 has applied the Lax-Wendroff procedures and the early time splitting

procedures of Strang40 to two-dimensional problems. Smith's work is concerned with the

comparison of the relative efficiency of the schemes and is not a complete initial

boundary value problem.

However, an improved version of Lax-Wendroff's scheme, that has the potential of

providing an improved computational efficiency and accuracy, can be applied to both

linear and nonlinear transient dynamic response problems in solid mechanics. The

improvement can be incorporated in three different areas. The first improvement is in

the modification of the scheme to make it optimally stable4 0 . This is due to Strang4 0 ' 4 1

and somewhat similar to that used by Smith. The second improvement is to improve the

computational efficiency by providing second order accuracy at every other time step.

This improvement follows the developments of Gottlieb 3 , Gourlay 4 2 , Morris 4 2 and
43 4Mitchell . The third improvement is in the incorporation of McCormack's4 4 two step

procedure. This third improvement results in programming simplicity and eliminates the

need for squaring the matrices that is needed in Lax-Wendroff or Strang's procedures.

This improvement is very useful in solving nonlinear problems.

An improvement in the implementation of the finite difference schemes is the

concept of point condition codes.2  Attempts at improvement of osillations, overshoots

and smearing of contact discontinuities are also possible

_-mood
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4. ANALYSIS UNDER CONDITIONS OF ONE-DIMENSIONAL STRAIN

4.1 Development of the Procedure

The proposed second order accurate method of analyzing the behavior of the

locking material has received little attention when applied to solid mechanics problems.

The efficiency and the resulting accuracy of the method have been studied as a part of

another sponsored research project at Georgia Tech. In this project, one and two-

dimensional problems of transient dynamic analysis have been investigated. At present,

nonlinear problems have been studied. In the previous analyses, the nonlinear behavior

has not been studied.

In this section, the proposed second order accurate difference scheme has been

applied to the transient dynamic response of locking materials. The application is

restricted to one-dimensional strain in the x-direction. The numerical results are

presented for the specific cases of loading for aluminum locking materials. This study is
undertaken for the following reasons.

(1) one-dimensional problem is relatively simple

(2) the analysis provides an understanding of how the proposed second order
accurate difference schemes can handle the phase transition

(3) the effect of different initial densities for the various locking materials can
be qualitatively understood with regard to a one-dimensional analysis.

(4) The method of analysis for one-dimensional problems would indicate the
possible areas of difficulties that may be encountered when extended to two
and three-dimensional problems of transient dynamic analysis of locking
materials.

The one-dimensional equations of motion have been written in Lagrangian

coordinates. The initial positions of the body have also been selected as the Lagrangian

coordinates. Large elastic-plastic deformations of the locking material have been

considered. The resulting equations are as follows:

-{u} A(p) fu (4.1)

where

U)i = v(x,t), pOx't), ar N(xt), ay(x~ t)} (4.2)
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and

0 0 p 0

f P). 0 0 0

2G 0 0 0

In these equations, it has been assumed that the stress tensor can be separated into

hydrostatic pressure and stress deviators. The hydrostatic pressure has been assumed to

be related to the changes in density and follow a locking behavior as shown in Figure 1.3.
The stress deviators are assumed to follow an elastic-ideal plastic behavior with

Von Mises' yield condition.

All the assumptions of the preceding paragraph are approximations. However,

these approximations have been used, in the past, to express the mechanical behavior of

locking materials 3,4 ,52 and other solids5 2 at very high stresses. On the basis of

experimental results, the approximations have been found to be reasonable5 2 . In the

absence of any available constitutive relationships on the basis of second Pioa-Kirchhoff

stresses and Green-Lagrange strains, this paper has considered similar approximations.

The constitutive relationships have been written in terms of Cauchy stresses, particle

velocity gradients and density. Then,

a x  = p + S x  (4.4)
~4 x

o = -p + Sy (4.5)

and

p = fl(P) 
0 0 < P < P"

p = f 2(p) PI < 0 < t • (4.6)

p = f 3 (p) Pt < P

i ---
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The quantities f I f2 and f3 are as follows (Figure 1.3):

fl(/ ) ~~P -I PI \o0-"-

Po 1f,° -p P, +- K (4)-R
2 1l R Lo I

f 3 (p) = A(P/PG - 1) + B (P/G - 2  (4.7)

Similarly,

=-2Sy=-2S .. !GE
x z p (4.8)

with the yield condition
2 2 2

Sx +2Sy 2 - 2 Y 2 ! 0. (4.9)

4.2 Numerical Analysis

A numerical integration of the hyperbolic partial differential equation (4.1) by a
procedure similar to that of Lax requires that the field variables I u at t + A t should be
calcualted from a knowledge of the field variables f u and its spatial derivatives at t.
To a second order accuracy,

t 2= ~ J At ' 8t- } - t * 0(At) • (.0

The differential equation (4.1) can be used to express the quantities a y/ t and a 2 / a t 2 in
terms of the spatial derivatives of U u. Then,

t +At (au I~2% a)2 2t = -u + [A()I (+
I3X aarI x 2  2

[LAI 111It 2 + [tA(p)J[ j1 (4.11)

a .. . ..a . . i
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The equation (4.11) is very complicated. It involves [A(p) 2 and multiples of first and
second partial derivatives of U u with respect to x. This equation can be considerably
simplified by using a two step approximation due to McCormack, Richtmyer or Gottlieb.
For example, McCormack two step formulation is as follows.

t

= t) At

= }(Ii u" * ) (4.12)

It is easy to verify the accuracy of (4.12) by expansion. Now, the time derivatives on the
right hand sides of (4.12) are replaced by spatial derivatives. Thus,

• au t
u = Jul [A( 0 )] ax At.

a.. u
IuIt+ = 't I u -Al • (4.13)

It is to be noted that [ A(p) I* and a y/ ax * are to be evaluated by using the star values
of the field variables. Also, it can be seen that the formulation described in the
equations (4.13) is much simpler than the formulation described in (4.11). To complete
the finite difference formulation, the spatial derivatives of (u } and { u } are expressed

in terms of their spatial finite difference approximations. A central, forward or
backward difference is used depending on whether the point under consideration is an
interior point, left boundary point or right boundary point.

4.3 Stability Requirements

The equations (4.13) can be written in the form of finite difference operators.
Then,

L =rl+ k[AJA
x

L= -11+ k[AIAx) . (4.14)

I~~~ ~ , , 2I II
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In these equations, Ax represents the spatial finite difference approximations. The
quantity I is the identity operator and At has been replaced by k. Then,

iut +At =-L+LL) i (4.15)2

The operators 1, L I and L, operating on I u in the manner shown in equation (4.15)

change I r I to I I t+A This is an explicit scheme and is subject to the usual
restrictions on k =At to maintain the stability of the computational scheme. In

particular, it can be shown that At 4Ax/c where c is the fastest of the local elastic wave

velocities.

4.4 Plasticity Effects and Yield Conditions

The numerical method that has been used in this paper is an explicit method. The

field variables at t. +at depend only on the field variables, at time t. The particle

velocities and strains at t + At can be computed from the current field variables at t.

The stresses computed at t. +at may violate the yield condition (4.9). However, these

stresses can be adjusted along appropriate normals to the yield surface back to the yield
surface' 2 . The already calculated velocities and strains that depend only on the field

variables at t remain unchanged. The only regions where iterative calculations are
needed are at the boundaries.

4.5 Discussion of Results

In order to achieve the same accuracy as a first order accurate method, a time step
equal to the square root of A t that is used in the first order method is needed. The

quantity At is usually less than one and hence the second order accurate method uses a

larger time step. Hence, a larger At can be chosen to obtain the same order of accuracy
as a first order method. This leads to a smaller number of the finite difference cells and
increased computational efficiency. The developed computer program has been used to

examine the efficiency of locking materials in attenuating stresses and protecting
structures. In this analysis, specified items include the peak impact stress and the
unloading pattern of the stress wave impinging on the locking materials. The locking
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density p I is usually fixed for a given locking material. The results of the numerical
analysis can be used to explain the peak stress and the stress distribution for various
times after impact and unloading at the boundary.

In the numerical example, aluminum locking materials have been selected. Some of
the properties of aluminum locking materials have been extensively investigated3 . A
pressure density relationship as shown in Figure 1.3 has been assumed. The locking
density pIis equal to the 2.72 gmslc.c. Various initial densities have been considered.
Results have been presented for p 0 z 1.39 and 2.1 gms/c.c here. There are three distinct
branches of the pressure-density relationship. Equations for these branches are the same
as in equations (4.6) and (4.7).

The quantity PG is the intersection of the p - 0 curve with p axis as shown in Figure
1.3. The appropriate constants are selected from reference 3. For all p > pt, the
unloading is assumed to follow the slope of the solid p - p curve as shown in Figure 1.3.

Two types of loading have been considered. The first type of loading consists of a
step loading followed by step unloading. It has been assumed that a peak compressive
stress of a00 is applied at time t =0 to the left boundary of the slab of a locking material.
For purposes of illustration, a value of - ao = 100,000 psi (689.5 MPa) has been assumed.
The applied stress is reduced to zero by step unloading at time i=0.? uisec. This loading
pattern is illustrated in Figure 4.1 and will be called loading pattern 'a'. The second type
of loading consists of a step loading of a compressive stress of magnitude - a0at t = 0
followed by an exponential unloading at the left boundary. For purposes of illustration,

-ahas been assumed to be equal to 100,000 psi (689.5 MPa)- The applied stress is
assumed to be maintained at a = -aO for a duration of 0.02 pi sec. Then the exponential
decay of the applied load at the left boundary decreases the magnitude of a0 to .05 a at
0.2 pzseCs. This unloading pattern is illustrated in Figure 4.2 and will be called loading Wb.

First, a solid material slab of initial thickness 0.3 inches (12.7 mm) has been
considered. The thickness has been divided into 100 cells. In this case the solid density
is 0 z = 2.72 gms/c.c. The transient response of this slab to the loading pattern 'a' has
been studied by using the developed computer program and the results are illustrated in
Figure 4.3. This figure is a plot of the stress a x as a function of the thickness at two
different instants of time t a 0.21 p~ secs and t a 0.68 11 secs. As seen in the figure, the
stress at a distance of 0.14 inch (3.6 mm) from the initial left boundary is still
approximately 100,000 psi (689.5 MPa). This is equal to the applied peak stress. No
significant attenuation has taken place during the travel of the stress wave through the
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thickness equal to 0.14 inch (3.6 mm).

Next, a locking material of initial density po = 2.1 gms/c.c. and locking density

P1= 2.72 gms. c.c. has been considered. The thickness and division into cells are

identical to those for the solid. The transient response to the loading pattern 'a' has been

computed and illustrated in Figure 4.4. The stress distribution as a function of the

distance from the left boundary has been illustrated for t = 0.13 jasec, 0.54 Pa sec,

1.15jasec, and 2.22)asec. It can be seen that the peak stress has reduced by

approximately 35% over a distance of 0.09 inch (2.3 mm) from the left boundary. In this

figure, the elastic forerunner wave can also be seen. Similar stress distributions are

observed for locking materials of initial density po = 1.818 gms/c.c., 1.604 gms/c.c. and

1.39 gms/c.c. If these locking materials are considered as countermeasures in front of a

given structure, the peak impact stress has been reduced by an amount as much as 50%

when the shock wave has propagated a distance of 0.013 inch (0.33 mm) (Figure 4.5). It

can also be observed that the locking material of lower initial density has the potential

of attenuating the impact peak stress by a larger percentage when compared with the

locking material of higher initial density.

As a next step, the loading pattern ' has been considered. The results of the study

of transient response through a solid has been illustrated in Figure 4.6. The results are

similar to those for the loading pattern 'a'. The peak impact stress has not attenuated

during the passage of the stress wave over a distance of 0.15 inch (3.8 mm). Similar

stress distribution for loading pattern b' has been illustrated in Figures 4.7 and 4.8 for

different locking materials of initial density p0 = 2.1 gms/c.c. and 1.39 gms/c.c. The

Figure 4.7 is for a locking material with initial density 2.1 gms/c.c. Over a shock wave

traverse of .045 inch the peak stress has been reduced by 60%. However, the locking

material with initial density of 1.39 gms/c.c. can attenuate the peak stress by almost

90%, during the shock traverse of 0.05 inch (1.3 mm). This is illustrated in Figure 4.8.

The unloading waves and the elastic forerunners can be identified in all these figures. In

Figure 4.9, the effect of the plasticity on the transient dynamic response is shown. A

yield stress of 80,000 psi is assumed for purposes of illustration.

5. ELASTIC - PLASTIC - LOCKING MATERIALS UNDER CONDITIONS OF AXISYMMETRY

3.1 Introduction

In this section, the numerical scheme that has been discussed in Sections 3 and 4

* 1_ _ _ _
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has been modified and applied to study the transient dynamic response of elastic-plastic

locking materials under conditions of axisymmetry. A cylindrical polar coordinate

system r, Oz has been used. Initial positions of various material points have been used as

Lagrangian coordinates. The problem has been formulated as a finite deformation

problem with Cauchy stresses that are defined in a deformed coordinate system. In order

to represent the equations in a form 1that is suitable for the use of Gottlieb3 6 -

MacCormack 44 -Strang4 0 '4 1 type of scheme, the constitutive relationships have been

used in a rate form. The Jaumann stress' 3 rate (or the corotational stress rate) has been

used to satisfy the principle of objectivity.

5.2 Governing Equations

The governing equations are then written as follows.

Kinematic equations:

= w (5.1)

f u (5.2)

Equations of motion:

I azz I Tzr I Tzr
P 3z P ar p r

I aTzr I Orr I arr-06paz -T -. r (5.4)

Constitutive equations:

(p +z ( G) G Gzr (.)

___ ip3z r P p+ z

. . . ...... . Ip~ ll-l . . .
G ) LI+ ( ) k u + ) + T A

dp r 3 m .... z , dp , r
-

ip III z P
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AR~ - 2 G +L (pdD - Z G) u (pog + G) U (5.7)dp3 a0d ar dp 3 r

w 'r (5.8)

Continuity equation:

3 w 3u u
=-P L-W - 0 L' -PR (5.9)

It has been assumed that

P = P(P) (5.10)

follows the equations similar to (4.6) that represent a locking behavior. A Von Mises

yield condition and ideal plasticity have been assumed.

(a + p)2 ( 2 + (a + p)2 + 2 (.11y
zz + (arr + P) 60 p Tzr.5- 3

The notation used in the equations are as follows:

z,r current positions of the coordinate

w velocity in z-direction

u velocity in r-direction

a normal stress in z-direction
Srr normal stress in r-direction

a88 normal stress in -direction

Tzr shear stress

p density

p hydrostatic pressure

G modulus of rigidity

Y yield stress in simple tension

L length, in the z-direction

R radius of the structure

I1
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The equations (5.1) to (5-.9) can be rewritten in the folJowing form

[A]= IA u), + EB] f U 1' + [C ] {u (512)
where

u zor, w, u, rr' ae F T zrP I "
The matrices [A],[B] and [C] are not constants in the finite deformation problem ofelastic-plastic-locking materials. Specifically

o 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

o 0 0 0 I/P 0 0 0 0
0 0 0 0 0 0 0 1/p 0
0 0 - zr 0 0 0 0 0 (5.13)d4p 32G

d " T Tzr 0 0 0 0 0

do 0 0 0 0 0 00 0 0 G+ 2 azz -a rr) 0 0 0 0 0

0 a 0 0 0 0 0 0

o 0 0 0 0 0 0 / 0
o 0 0 0 0 0 0 0 0
0 0 a 0 0 0 0 /P 0
o 0 0 0 0 /o 0 0 0

2G0 0 0 d p. 0 0 0 0 0
o 0 G z -ao + T 0 0 0 0 0

d000 0 0
2 zz rr0 0 Ip 0 0 0 0 0
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and

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1/pr 0

0 0 0 0 0 I/or -I/pr 0 0

[c]= 0 0 0 AR - L)Ir 0 0 0 0 0 *(5.15)

o 0 0 (p9P-- )/r 0 0 0 0 0

0 ~ +L)r 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 -p/r 0 0 0 0 0

5.3 Numerical Method

For the hyperbolic differential equation (5.12), the Lax-Wendroff second order

operator can be written as follows.

{u} t + At = L {u}t (5.16)

where

Lzr C] + At(IAA. z + B] A + Cc])

+ tz[ 2 * [B] 2  rr ([A] [B] [A]) Ar,

+ [A][ A], u &z A + [1B][A],. A, A.

* [A],[A]A, A, [A],.[B] Ar Az + tA],[C] A A

" ([A][C]+ CC] [A]) "
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+ [A]EB], 8z Ar + EB][B],u

+ [B],uEA]Az Ar + EB],uEB] ArAr

+ EB],u [C] Ao Ar + ([BJEC] + [CJ B])Ar

+ [A] c],o ' z Ao +I] [c], Ar A0 + [c],o[A] Az Ao

+ [C],[]A&o + [c],o[C]Ao [C]2 (5.17)

In this equation, the quantities

%z{u} .. a{u

{u {u},

Az{} u} -I {u}, (5.18)
az

2
ar

and

represent the finite difference approximations. Because the Lagrangian meshes deform,

a central finite difference operator is not always suitable. The central difference has

been replaced by a contour difference that maintains a second order accuracy.

The finite difference operator is not optimally stable. The maximum value of the

.a .
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time step is restricted by the following equation.

At max(X Im i n ( A -z , A r ) A ' X / 8

where XA' X B are the eigenvalues of A and B respectively. In an optimally stable

scheme, the right hand side, which is also often called Courant, Friedrichs and Levy

number (CFL), should be 1, instead of lIv/8. Furthermore the operator (5.17) is

complicated and the increased number of computations, in many cases, negates any

computational efficiency obtained by resorting to second order accurate methods. The

Lax-Wendroff operator can be replaced by a modified Strang's4 0 ,4 operator to make the

Lax-Wendroff's scheme optimally stable. The modification of Strang's scheme involves

replacing the central difference operators of Strang by contour differences and

accomodating the axisymmetric equations. Then,

UPt+ At= LAt/2 LAt/ 2 LzAt/ 2 LrAt/2 { u It (5.19)

{ }~+ t r z z r~u

where

L~t ' ]+ t ([A]A, + [D]Ao)

+ ttLA] AA + [A][D] [D][A]

* [ A][A]u A. + [A],u[A ]. + [A]u[D] o, Az

* [D] 2 *+ A][D] , + [D],u[A]A z + [D],u[D] Ao} (5.20)
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r A /2 Ij +VL([B] +{E])
2i

4 LIf BJL+ [ 'F F + B LJ Si'u A,

+ B]u [B] Ar + [B],u[E] A.) Ar +([E][E]+ BEE],u Ar

+ [E],u[BlA r + E~ C E] ) A52

and

[D]+[E]=[C] (5.22)

Even though the Strang's type of operator (5.20) is optimally stable, the

computational efficiency can be substantially increased by restoring the second order

accuracy at every other time step by following the procedures similar to those of
42,43Gourlay, Morris and Mitchell 2  , Then

L t+ 2At = L At LAt Lztt LAt f u(
rz r z z r f(.23)

The finite difference operators (5.23), (5.20) and (5.21) still contain multiplication of

matrices, such as, I A IB), IAI,] I A) etc. The operation can be simplified by using
44two step procedures . Thus, for example

L z  =[II + At (A] Az + At (DI

2 !(I L +a * A ~ J *A + 1 (5.24)
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where I A I* and I D ]* are evaluated by using the value of { u }*. A similar expression

can be written for Lr in r-direction. Suitable spatial contour difference forms that

maintain second order accuracy and are suitable for use in equations of the type (5.24)

have been developed at Georgia Institute of Technology . These are different from those

used in references (28, 29)
For an interior point, a typical member V of the field vector {u} is evaluated as

follows.

V(1 ) t+ At(BA r + E)Ut

V(2 = (Ut +V( ) + I At(B(IV + E(I)) V(

V() V At(A(2 A z D+)D(3)  V(2)+ (2)z (2)) V(2)

= V + A V+D )

(4) V(2) +V(3)  - V * D(3 ) V(3 )

(5.25)
V(5) = V(4) + At(A(4 ) Az + D(4)) V(4 )

V(6 ) = (V(4 ) ( + At(A (5)Vz + (5)  (5)

V(7) = V(6) + At(B(6) Ar + E(6)) V(6)

V~ ~~~~6 rVV +iA(

(8) = 2(6) + (7) 2At(B( 7 )V E(7 ))V( 7 )

ut +2At V

In this equation Ar and Vr represent the contour difference operators that represent the

equivalent forward and backward difference operators, that are needed in the two step

*Chen, H. P., Ph.D. Thesis

I
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procedures. At the boundaries, these equations have been modified to include the

appropriate boundary conditions.

5.4 Numerical Results and Discussion

The material considered for the detailed numerical analysis has the following

properties:

Solid density, p, = 2.72 gms/cc

Young's Modulus, E = 1.1 x 107 psi (75845 MPa)

Poisson's ratio, v = 0.3

In the following analysis, three different types of material behavior have been

considered. These are: (i) elastic behavior, (ii) elastic-plastic behavior and (ii) elastic-

plastic behavior in a locking material. For the study, a yield stress Y = 20,000 psi

(137.9 MPa) has been assumed. For the locking material, the initial density is chosen to

be 2.1 gms/cc. There are three distinct branches of the pressure-density relationship.

These are shown in Figure 5.1. For this analysis, first two branches are assumed to be

straight line segments. The values chosen for p of 1, p1 etc. (figure 5.1), for the present

numerical studies, are

P0  = 2.1 gms/cc P1  6600 psi (45.5 MPa)

P 1 2.11 gms/cc pe = 66600 psi (459.2 MPa)

and

a n= 2.7 2 g m s/c c

The equations of the lines corresponding to the three branches of the pressure-density

relations are

P(

p- =l-o 0 pp
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P = P1 + Po-P (p PI P < <,

p = A (o/P G - ) + B (P/p G 1) 2  p > t

The constants A, B, P G are selected from reference 3.

Two different time variations of loading are considered. The first type is a step

loading (without unloading) as shown in Figure 5.2. The second type is also a step loading

but with an unloading at a time t L t This is shown in Figure 4.1. The magnitude of the

peak compressive stress %has been assumed to be 100,000 psi (689.5 MPa). The

geometry of the structure and the corresponding applied loading are shown in Figures

5.3a and 5.3b. The boundary conditions at the unloaded edges are also shown in the same

figures. These boundary conditions are the same for both the cases of applied loading.

Physically, these boundaries can be considered to be "frictionless-rigid". This means

that, on these edges, the velocities in the direction normal to the plane of edges and the

shear stresses are zero. Referring to figures 5.3a and 5.3b, these boundary conditions are

expressed as W =0, T zr z 0 at the boundary which can be denoted by z(t =0) =L and

U =0, T zr 0 Oat the boundary denoted by r(t = 0) = R. On the left boundary, represented

by z(t = 0) =0, there are two types of applied loading. One type corresponds to the load

on the entire edge as shown in Figure 5.3a and the other corresponds to a partial load on

the edge as shown in Figure 5.3b. There are two cases of loading type shown in Figure

5.3a. These cases are denoted as case 5a and case 5b. In both these cases, the loading,

the geometry and the boundary conditions are such that a one-dimensional strain

condition is created in the axisymmetric problem that consists of two space dimensions

and time. The problems under these cases are solved in order to simulate a one-

dimensional problem of transient dynamic analysis that can be compared with known

solutions. The difference between case 5a and case 5b is that case 5a has only a step

loading while case 5b has a step loading followed by a step unloading. The case Sb can

also be called a pulse loading.

Similar to the above cases, there are also two different cases under the partial

loading condition shown in Figure 5.3b. These cases are identified as case 5c and case

3d. The partial loading creates two-dimensional conditions. Again, the difference

between case 3c and case 5d is that case Sc represents a step loading and case 5d

represents a pulse loading.
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The dimensions pertaining to the problem are as follows (Figure 5.3)

L = 3.2 in (81 mm), R = 0.8 in (20 mm), R1 = 0.32 in (8 mm)

In order to apply the finite difference scheme, the region bounded internally by the edges
z(t = 0) = 0, L and r(t = 0) = 0, R is divided into 400 cells. The dimensions of these cells

are: Az = Ar = 0.08 in (2 mm). This mesh pattern is used for all the cases. Since the

finite difference scheme proposed in this section is optimally stable, the CFL number is

chosen to be 1. However, the time step at is not always a constant. All the plots display

the variation of the stress a zz with repsect to the deformed z-coordinate. Also, the
symbols E, E-P and E-P-L in the figures refer to the elastic solid, elastic-plastic solid

and elastic-plastic-locking material respectively.
As a first step, some typical results of the stress variations obtained by using a leap

frog scheme (programed at Georgia Institute of Technology) with linear or quadratic

artificial viscosities are compared with those obtained by the second order accurate

method. These are shown in Figures 5.4a, 5.4b and 5.4c. In these figures, step loading

condition of case 5a has been assumed and only elastic behavior is considered. The

addition of artificial viscosity in a leap frog scheme results in a scheme that is no longer

optimally stable. Suitable CFL numbers must be chosen in these numerical calculations.

In Figure 5.4a the descriptions of the plots correspond to the CFL numbers and times t as

given in the following table.

Method used CFL number Elapsed time t after
the application of load

present method 1.0 9.25 1jsecs

leap frog scheme 0.3334 9.26 tsecs
with linear viscosity

leap frog scheme 0.3334 9.51 Usecs
with quadratic viscosity

It can be seen from Figure 3.4a that the a zz- z variation by the present second order

accurate method has a very sharp wave front, and indicates very little oscillation behind

the shock wave. A modest amount of overshooting of the shock front can also be
observed. The curve obtained by leap frog scheme with linear viscosity has a very wide
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transition layer instead of a steep shock front, although it has no overshooting and
oscillations behind the shock wave. In the plot that represents the results of the leap

frog scheme with quadratic viscosity, oscillations behind the shock wave are significant.

The solution represents a problem with one-dimensional strain and hence no physically

significant oscillations are present. All oscillations are computationally induced. A
larger overshooting is observed when compared with that of the second order accurate

method. The shock wave front is also not steep. The results of using higher CFL
numbers in the leap frog scheme with artificial viscosity are shown in Figures 5.4b and
5.4c. For the results shown in Figure 5.4b, the CFL number used is 0.66 for both the

linear and quadratic viscosity cases. Obviously, the results indicate instability.
Oscillations behind the wave front, large overshooting and wide transition shock layers

can be observed. In Figure 5.4c, the values of CFL = 0.7 and 0.9 are used in the leap frog
scheme with linear and quadratic viscosities respectively. These results are also not
satisfactory because of the numerical instability. From this elementary analysis, it can

be concluded that the second order accurate finite difference method suggested in this
report is a desirable choice for using larger time steps.

Elastic, elastic-plastic and elastic-plastic locking behavior are compared in Figures

5.5 and 5.6. In both these figures, the stress a has been plotted against the current z

coordiantes that were originally located along r(t = 0) = 0. The Figure 5.5 corresponds to

approximately 7 usecs after loading at the boundary z(t = 0) = 0. The corresponding time
for Figure 5.6 is approxiamtely equal to 12 usecs. The specific times for the elastic
body, elastic-plastic and elastic-plastic-locking bodies in the Figure 5.5 are 6.61 Iusecs,

6.60 Uisecs and 6.74 lhsecs. Similar times in Figure 5.6 are 11.09tisecs for the elastic

body, 11.86 Iecs for the elastic-plastic body and 11.96 Iu secs for the elastic-plastic
locking material. The calculated values were available at these different times because

of the different values of At. The three different wave fronts can be seen for the

elastic-plastic locking material. The single wave front for the elastic body and a two
wave front system for elastic-plastic body can also be seen. There are no oscillations
behind the wave front because of the simulation of one-dimensional strain conditions by
a combination of loading, geometry and boundary conditions. The velocity of the locking

wave is the slowest of the waves.

In Figure 5.7, the results for the case of a pulse loading are shown. The loading

consists of a step loading followed by a step unloading. Again the loading, geometry and

the boundary conditions simulate the one-dimensional strain conditions. The applied load
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is set to zero at t =t. The value of t = 1.33 secs for the elastic body, t =1.33 Ij secs

for the elastic-plastic body and t =1.42 p~ secs for the elastic-plastic locking material

have been selected. The figure clearly indicates that the attenuation of peak stresses is

maximum in the locking material. A reduction of peak stress is also seen in the elastic-

plastic body without locking. The reduction, however, is not significant in comparison to
the locking material. In the elastic body the peak stresses are not reduced. These

results support the fact that locking materials are effective stress attenuators.

The loading for cases 5c and 5d correspond to a partial loading on the surface
z(t = 0) =0. This corresponds to a two-dimensional (r - z) problem. The variation of z
against z are shown in Figures 5.8 to 5.10. These are for a step loading without

unloading. The two Figures 5.8 and 5.9 correspond to lines r(t = 0) = 0 and 0.56 in
(14.2 mm). It is observed that the elastic-plastic locking material displays a steeper

wave front in comparison with an elastic-plastic material. The oscillations behind the

elastic wave, due to boundary effects in this two-dimensional problem, can be seen. The
stress magnitudes in Figure 5.9 are small. This is due to the fact that the region is away
from the area of the load application. The variations of a zzwith z, for r(t = 0) = 0 and

the locking material, are shown in Figure 5.10 for increasing values of times. The
development of three distinct wave fronts can be seen.

The Figures 5.11 and 5.12 correspond to pulse loadings on a part of the surface

specified by z(t = 0) =0. Again, two-dimensional effects are present. The Figure 5.11 is

for r(t = 0) = 0. The Figure 5.12 is for r(t =0) = 0.56 in (14.2 mm) which is located away
from the loading region. Again, observation regarding the attenuation of peak stresses

can be made.
6. CONCLUSIONS

In this report, it has been shown that a locking material shield has the potential of
protecting a given structure from dynamic loads that have a time history similar to that
of mine blasts. This conclusion is based on the analysis under conditions of one-

dimensional strain and the studies under conditions of axisymmetry. In order to provide a
tool for designing the locking material shield, a second order accurate, computationally
efficient numerical scheme has been developed. The numerical scheme is capable of
considering large deformations and locking phase transition and provide accurate results

in comparison to the present state-of-the-art. Point condition codes are also developed
for locking material-structure combinations. The accuracy and the reliability of the
resulting computer program have been checked by comparing the results with known
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solutions.

To follow the present work, some additional tasks are recommended. One such task

is to improve the accuracy and the computational efficiency during phase transition and

unloading. Furthermore, the shockwave can be steepened by employing new techniques

such as the method of artificial compression. Another area of suggested work is the non-

ideal plasticity. A very important additional task will be to investigate the accuracy of
methods such as the state space approach with its inherent exactness and simplicity of

reducing three-dimensional problems to those involving only two-dimensions.

[ ________
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